Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A ray is incident on a plane surface. If $\hat{i} + \hat{j} - \hat{k}$ represents a vector along the direction of incident ray.$\hat{i} + \hat{j} $ is a vector along normal on incident point in the plane of incident and reflected ray, then vector along the direction of reflected ray is

JIPMERJIPMER 2011Ray Optics and Optical Instruments

Solution:

image
According to law of reflection in vector form,
$\hat{n_2} = \hat{n_1} - 2 (\hat{n_1} .\hat{n}) \hat{n}$
Here, $\hat{n_1}$ = the unit vector along incident ray
$= \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}} $
$\hat{n}$ = unit vector along normal on incident point
$= \frac{\hat{i} + \hat{j}}{\sqrt{2}}$
$\hat{n_2}$ =unit vector along the direction of reflected ray
Using the formula, we get
$\hat{n_2} = \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}} - 2 \bigg\{ \bigg( \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}\bigg) . \bigg( \frac{\hat{i} + \hat{j}}{\sqrt{2}} \bigg). \bigg( \frac{\hat{i} + \hat{j} }{\sqrt{2}} \bigg) \bigg\}$
$= \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}} - 2 \bigg\{ \frac{1}{\sqrt{6}} + \frac{1}{\sqrt{6}} \bigg\} \frac{\hat{i} + \hat{j}}{\sqrt{2}}$
$= \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}} - \frac{4}{\sqrt{6}} \bigg( \frac{\hat{i} + \hat{j}}{\sqrt{2}} \bigg)$
$= \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}} - \frac{4\hat{i}}{\sqrt{12}}- \frac{4\hat{j}}{\sqrt{12}}$
$= \frac{2 \hat{i} +2 \hat{j} - 2\hat{k} -4\hat{i} - 4\hat{j} }{2\sqrt{3}} $ $(\because \, \sqrt{12} = 2 \sqrt{3} )$
$= \frac{-2 \hat{i} -2 \hat{j} - 2\hat{k} }{2\sqrt{3}} = \frac{- \hat{i} - \hat{j} -\hat{k}}{\sqrt{3}}$
$= - \frac{1}{\sqrt{3}} ( \hat{i} + \hat{j} +\hat{k})$