Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A random variable $X$ has the probability distribution given below.
X 1 2 3 4 5
P(X = x) K 2K 3K 2K K

Its variance is

EAMCETEAMCET 2014

Solution:

Given distribution is
X 1 2 3 4 5
P(X = x) K 2K 3K 2K K

$\therefore $ Variance $=\Sigma x_{i}^{2} \,p-\left(\sum x_{i}\, p\right)^{2}$
$=(1 k+8 k+27 k+32 k+25 k)-(k+4 k+9 k+8 k+5 k)^{2}$
$=(93 k)-(27 k)^{2}=\left(93 \times \frac{1}{9}\right)-\left(27 \times \frac{1}
{9}\right)^{2}\,\,\,\left(\because \Sigma p=1, \therefore k=\frac{1}{9}\right)$
$=\frac{93}{9}-9=\frac{93-81}{9}=\frac{12}{9}=\frac{4}{3}$