Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A proton and an $\alpha $ -particle are projected normally with the same speed into a magnetic field. What will be the ratio of radii of the trajectories of the proton and $\alpha $ -particle?

NTA AbhyasNTA Abhyas 2020Moving Charges and Magnetism

Solution:

In perpendicular magnetic field
Magnetic force = centripetal force
$ \, \, \, qvB=\frac{m v^{2}}{r} \, \Rightarrow r=\frac{m v}{q B}$
For proton $ \, q_{1}=e, \, m_{1}=m$
For $\alpha $ -particle $q_{2}=2e, \, m_{2}=4m$
$\therefore \, \, \, \frac{r_{1}}{r_{2}}=\frac{m_{1} v}{q_{1} B} \, \times \frac{q_{2} B}{m_{2} v}$
$ \, \frac{r_{1}}{r_{2}}=\frac{m}{e} \, \times \frac{2 e}{4 m}$
$ \, \frac{r_{1}}{r_{2}}=\frac{1}{2}$