Thank you for reporting, we will resolve it shortly
Q.
A polygon has $44$ diagonals. The number of its sides are
AMUAMU 2016Permutations and Combinations
Solution:
Let $n$ be the number of sides of given polygon.
$\therefore $ Polygon with $n$ sides $=\frac{n(n-3)}{2}$ diagonal
$\Rightarrow \frac{n(n-3)}{2}=44 $ [given]
$\Rightarrow n^{2}-3 n=88 $
$\Rightarrow n^{2}-3 n-88=0 $
$\Rightarrow n(n-11)+8(n-11)=0 $
$\Rightarrow (n+8)(n-11)=0$
$\Rightarrow n+8=0 $ or $ n-11=0$
$\Rightarrow n=-8 $ or $ n=11$
But side cannot be negative.
$\therefore n=11$