Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A point $O$ is the centre of a circle circumscribed about a triangle ABC. Then $\overrightarrow{OA}$ sin 2A + $\overrightarrow{OB}$ sin 2B + $\overrightarrow{OC}$ sin 2C is equal to

Vector Algebra

Solution:

$\frac{\vec{OA} \, sin \,2A +\vec{ OB} \, sin \,2B + \vec{OC } \, sin \,2C}{sin \,2A + sin \,2B + sin \, 2C}$
$\Rightarrow \frac{\vec{OA} \, sin \, 2A +\vec{ OB} \, sin \,2B + \vec{OC } \,sin \,2C}{sin \,2A + sin \,2B + sin \,2C}=\vec{O}$
or $\overrightarrow{ OA} \,sin \,2 A + \overrightarrow{ OB} \, sin \, 2B + \overrightarrow{OC} \,sin \,2C = \vec{0}$