Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
A plane wave y=a sin (w t-k x) propagates through a stretched string. The particle velocity versus x graph at t=0 is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. A plane wave $y=a \sin (w t-k x)$ propagates through a stretched string. The particle velocity versus $x$ graph at $t=0$ is
AP EAMCET
AP EAMCET 2020
A
B
C
D
Solution:
Plane wave is given as
$y=a \sin (\omega t-k x)$
at $t=0$
$y=a \sin (\omega \times 0-k x)$
$\Rightarrow =a \sin (-k x) \Rightarrow -a \sin k x$
Particle velocity,
$v_{p a}=\frac{d y}{d t}=\frac{d}{d t}(-a \sin k x)$
$=-a k \cos k x=-a k \cos \frac{2 \pi}{\lambda} x\left[\because k=\frac{2 \pi}{\lambda}\right]$
$=-\frac{2 \pi a}{\lambda} \cos \frac{2 \pi x}{\lambda}$ ...(i)
From Eq. (i),
When $x=0, v_{p a}=\frac{-2 \pi a}{\lambda} \cdot \cos 0=\frac{-2 \pi a}{\lambda}$
When $x=\frac{\lambda}{4}, v_{p a}=\frac{-2 \pi a}{\lambda} \cdot \cos \frac{\pi}{2}=0$
When $x=\frac{\lambda}{2}, v_{p a}=\frac{-2 \pi a}{\lambda} \cdot \cos \pi=\frac{2 \pi a}{\lambda}$
When $x=\frac{3 \lambda}{4}, v_{p a}=\frac{-2 \pi a}{\lambda} \cos \left(\frac{-\pi}{2}\right)=0$
When $x=\lambda, v_{p a}=\frac{-2 \pi a}{\lambda} \cdot \cos 2 \pi=\frac{-2 \pi a}{\lambda}$
Hence, correct graph is