Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A particular solution of $\log \left(\frac{d y}{d x}\right)=3 x+4 y, y(0)=0$ is

Bihar CECEBihar CECE 2009

Solution:

Given, $\log \left(\frac{d y}{d x}\right)=3 x+4 y$
$\Rightarrow \frac{d y}{d x}=e^{3 x} e^{4 y}$
$\Rightarrow e^{-4 y} d y=e^{3 x} d x$
On integrating both sides, we get
$-4 e^{-4 y}=3 e^{3 x}+c$
At $x=0,\, y=0$,
$-4=3+c \Rightarrow c=-7$
$\therefore $ Solution is $4 e^{-4 y}+3 e^{3 x}=7$