Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A particular reaction has a rate constant $1.15 \times 10^{-3} s ^{-1}$. How long does it take for $6 \,g$ of the reactant of reduce to $3\, g$ ? $(\log 2=0.301)$

TS EAMCET 2018

Solution:

Given, rate constant $(k)=1.15 \times 10^{-3} \,s ^{-1}$

Reaction time = ?

Initial amount of reactant $\left(A_{o}\right)=6 g$

Final amount of reactant $\left(A_{f}\right)=3 g$

From rate constant equation,

$k =\frac{2.303}{t} \log \frac{A_{o}}{A_{f}} $

$1.15 \times 10^{-3} =\frac{2.303}{t} \log \frac{6}{3}$

$ t =\frac{2.303}{1.15 \times 10^{-3}} \log \frac{6}{3}=\frac{2.303}{1.15 \times 10^{-3}} \times .3010 $ $t =.6027 \times 10^{+3} s $

or $ t =603 \,s$