Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A particle of mass $7 \,kg$ is executing circular motion with time period of $11\, sec$. Find out centripetal force if radius of circle is $10\, m$.

JIPMERJIPMER 2019

Solution:

As we know, $\omega 2\pi f$
$\omega=\frac{2\pi}{T}\quad\quad\quad\quad\quad\left[\because \,f=\frac{1}{T}\right]$
And, $v = r\omega$
Then, $v = \frac{2\pi r}{T}$
$v = \frac{2\pi\left(10\right)}{11}=\frac{2\times22\times10}{7\times11}=\frac{40}{7}$
Centripetal force,
$F_{c}=\frac{mv^{2}}{r}=\frac{7}{10}\times\frac{40}{7}\times\frac{40}{7}=\frac{160}{7}N$