Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A particle of charge per unit mass $\alpha$ is released from the origin with velocity $\overrightarrow{ v }= v _{0} \hat{ i }$ in the magnetic field
$\vec{ B }=- B _{0} \hat{ k }$ for $x \leq \frac{\sqrt{3}}{2} \frac{ v _{0}}{ B _{0} \alpha}$
and $\vec{ B }=0$ for $x >\frac{\sqrt{3}}{2} \frac{ v _{0}}{ B _{0} \alpha}$
The $x$-coordinate of the particle at time $t \left(>\frac{\pi}{3( B )_{0} \alpha}\right)$ would be

NTA AbhyasNTA Abhyas 2022

Solution:

$r =\frac{ mv _{0}}{ B _{0} q }=\frac{ v _{0}}{ B _{0} \alpha}, \frac{ x }{ r }=\frac{\sqrt{3}}{2}=\sin \theta$
$ \Rightarrow \theta=60^{\circ}$
$t _{ OA }=\frac{ T }{6}=\frac{\pi}{3 B _{0} \alpha}$
Solution
Therefore $x$-coordinate of particle at any time $t>\frac{\pi}{3 B _{0} \alpha}$ will be
$x =\frac{\sqrt{3}}{2} \frac{ v _{0}}{ B _{0} \alpha}+ v _{0}\left( t -\frac{\pi}{3( B )_{0} \alpha}\right) \cos 60^{\circ} $
$=\frac{\sqrt{3}}{2} \frac{ v _{0}}{ B _{0} \alpha}+\frac{ v _{0}}{2}\left( t -\frac{\pi}{3( B )_{0} \alpha}\right)$