Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A particle moves in a straight line with a constant acceleration. It changes its velocity from $10 \, m \, s^{- 1}$ to $20 \, m \, s^{- 1}$ while passing through a distance $135 \, m$ in $t$ seconds. The value of $t$ is:

NTA AbhyasNTA Abhyas 2022

Solution:

Initial velocity, $u \, = \, 10 \, m \, s^{- 1}$
Final velocity , $v \, = \, 20 \, m \, s^{- 1}$
Distance , $s \, = \, 135 \, m$
Let , acceleration = a
Using the formula , $v^{2} \, = \, u^{2} + 2 a s$
$\Rightarrow \, \, \, a \, = \, \frac{v^{2} - u^{2}}{2 s}$
$or \, \, a = \, \frac{\left(\right. 20 \left.\right)^{2} - \left(\right. 10 \left.\right)^{2}}{2 \times 135} \, = \, \frac{400 - 100}{2 \times 135}$
$or \, \, a \, = \, \frac{300}{2 \times 135} \, = \, \frac{150}{135} \, = \, \frac{10}{9} \, m \, s^{- 2}$
Now , using the relation , $v \, = \, u + a t$
t = vua = 2010109 = 1010×9= 9 s.