Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A particle is projected with some angle from the surface of the planet. The motion of the particle is described by the equation; $x=t, y=t-t^2$. Then match the following columns:
Column I (quantity) Column II (magnitude only)
A Velocity of projection 1 1
B Acceleration 2 $\sqrt{2}$
C Time of flight 3 2
D Maximum height attained 4 $\frac{1}{4}$

Motion in a Plane

Solution:

$( A ) \rightarrow(2) ;( B ) \rightarrow(3) ; C \rightarrow(1) ; (D) \rightarrow(4)$
$U_x=\frac{d x}{d t}=1 \text { and } U_y=\frac{d x}{d t}=1-2 t$
$\therefore U_{t=0}=\sqrt{u_x^2+y_y^2}=\sqrt{1^2+1^2}=\sqrt{2} m / s$
$a_x=\frac{d^2 x}{d t^2}=0 ; d_y=\frac{d^2 y}{d t^2}=-2$
For time of flight,
$y=0 \text { or } 0=t-t^2 \therefore t=1 s \text {. }$
For maximum height, $t=\frac{1}{2} s$
$\therefore H=t-t^2=\frac{1}{2}-\left(\frac{1}{2}\right)^2=\frac{1}{4} m$