Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A particle is projected up from a point at an angle $\theta$ with the horizontal direction. At any time $t$, if $P$ is the linear momentum, $y$ is the vertical displacement, $x$ is horizontal displacement, the graph among the following which does not represent the variation of kinetic energy KE of the particle isPhysics Question ImagePhysics Question ImagePhysics Question ImagePhysics Question Image

BITSATBITSAT 2009

Solution:

Momentum, $p=m.v$
$\Rightarrow v=\left( \frac{p}{m} \right)$
Kinetic energy, $KE=\frac{1}{2}m{{v}^{2}}$
$=\frac{1}{2}m\left( \frac{{{p}^{2}}}{{{m}^{2}}} \right)=\frac{1}{2m}{{p}^{2}}$
$\Rightarrow KE\,\propto \,{{p}^{2}} ( \because \frac{1}{2m}=$ constant)
Hence, the graph between KE and ${{p}^{2}}$ will be linear as shown below
Now, kinetic energy $KE=\frac{1}{2}\text{ }m{{v}^{2}}$
The velocity component at point $P$,
$v_{y}=(u\,\sin \theta -gt)$
and $v_{x} =u\,\,\cos \theta $
Resultant velocity at point $P$,
$\overrightarrow{v}=v_{y}\hat{j}+v_{x}\hat{i}$
$ =(u\,\sin \,\theta -gt)\hat{j}+u\cos \,\theta \,\hat{i}$
$|\overrightarrow{v}|=\sqrt{{{(u\,cos\,\theta )}^{2}}+{{(u\,\sin \theta -gt)}^{2}}}$
$=\sqrt{{{u}^{2}}{{\cos }^{2}}\theta +{{u}^{2}}\,{{\sin }^{2}}\,\theta +{{g}^{2}}{{t}^{2}}-2ugt\,\,\sin \theta }$
$\therefore \sqrt{{{u}^{2}}({{\cos }^{2}}\theta +{{\sin }^{2}}\theta )+{{g}^{2}}{{t}^{2}}-2ugt\,\sin \theta }$
$ KE=\frac{1}{2}m({{u}^{2}}+{{g}^{2}}{{t}^{2}}-2ugt\,\,\sin \theta )$
$ \Rightarrow KE\,\propto \,{{t}^{2}}$
Hence, graph will be parabolic with intercept on y-axis.
Hence, the graph between KE and t
Now, in case of height $ KE=\frac{1}{2}m({{v}^{2}})$
and ${{v}^{2}}=({{u}^{2}}-2gy)$
$\therefore KE=\frac{1}{2}m({{u}^{2}}-2gy)$
$KE=-mgy+\frac{1}{2}m{{u}^{2}}$
Now, $KE=\frac{1}{2}m{{v}^{2}}$
$KE=\frac{1}{2}m{{\left( \frac{x}{t} \right)}^{2}}$
$KE\,\propto \,{{x}^{2}}$.
Thus graph between KE and x will be parabolic.

Solution Image Solution Image Solution Image Solution Image Solution Image