Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A particle is moving with velocity $v=k\left(y \hat{\text{i}} + x \hat{\text{j}}\right)$ where $k \, $ is a constant. The general equation for its path is

NTA AbhyasNTA Abhyas 2022

Solution:

$v=k\left(y \hat{\text{i}} + x \hat{\text{j}}\right)$
$\frac{\text{d} \textit{x}}{\text{d} \textit{t}}=\textit{ky}$
$\frac{\text{dy}}{\text{d} \textit{t}}=\textit{kx}$
$\frac{\text{d} \textit{y}}{\text{d} \textit{x}}=\frac{\text{d} \textit{y}}{\text{d} \textit{t}}\cdot \frac{\text{d} \textit{t}}{\text{d} \textit{x}}=\frac{\left(\textit{kx}\right)}{\left(\textit{ky}\right)}$
$\left(\text{d} \textit{y}\right)\textit{ky}=\text{d}\textit{x.kx}$
$\textit{y}\text{dy}=\textit{x}\text{d}\textit{x}$
$\frac{\textit{y}^{2}}{2}=\frac{\textit{x}^{2}}{2}+\text{constant}$
$\Rightarrow \textit{y}^{2}=\textit{x}^{2}+\text{constant}$