Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A particle is moving such that its position coordinates $(x, y)$ are $(2\, m , 3\, m )$ at time $t=0, (6 \, m , 7 \, m )$ at time $t=2 \, s$ and $(13\, m , 14 \, m )$ at time $t=5 \, s$.
Average velocity vector $\left(\vec{v}_{ av }\right)$ from $t=0$ to $t=5\, s$ is

AIPMTAIPMT 2014Motion in a Plane

Solution:

At time $t=0$, the position vector of the particle is
$\vec{r}_{ 1 }=2 \hat{i}+3 \hat{j}$
At time $t=5 s$, the position vector of the particle is
$\vec{r}_{2}=13 \hat{i}+14 \hat{j}$
Displacement from $\vec{r}_{1}$ to $\vec{r}_{2}$ is
$\Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1}=(13 \hat{i}+14 \hat{j})-(2 \hat{i}+3 \hat{j}) $
$= 11 \hat{i}+11 \hat{j} $
$\therefore$ Average velocity,
$ \vec{v}_{ av }=\frac{\Delta \vec{r}}{\Delta t}=\frac{11 \hat{i}+11 \hat{j}}{5-0}=\frac{11}{5}(\hat{i}+\hat{j})$