Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Chemistry
A particle is moving 3 times faster than the speed of electron. If the ratio of wavelength of particle and electron is 1.8 × 10-4, then particle is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. A particle is moving 3 times faster than the speed of electron. If the ratio of wavelength of particle and electron is $1.8 \times 10^{-4}$, then particle is
AIIMS
AIIMS 2013
Structure of Atom
A
Neutron
44%
B
$\alpha$-particle
34%
C
Deuteron
10%
D
Tritium
11%
Solution:
Given : $\frac{\lambda_{\text {particle }}}{\lambda_{\text {electron }}}=1.8 \times 10^{-4}$
and $\frac{v_{\text {particle }}}{v_{\text {electron }}}=3$
According to de-Broglie equation,
$\lambda=\frac{h}{m v}$
$\frac{\lambda_{\text {particle }}}{\lambda_{\text {electron }}}=\frac{h}{m_{\text {particle }} \times v_{\text {particle }}} \times \frac{m_{\text {electron }} \times v_{\text {electron }}}{h}$
$=\frac{m_{\text {electron }}}{m_{\text {particle }}} \times \frac{v_{\text {electron. }}}{v_{\text {particte }}}$
$\Rightarrow 1.8 \times 10^{-4}=\frac{9.1 \times 10^{-31} kg }{m_{\text {particle }}} \times \frac{1}{3}$
$m_{\text {particle }} =\frac{9.1 \times 10^{-31}}{1.8 \times 10^{-4} \times 3}$
$=1.6852 \times 10^{-27}\, kg$
Actual mass of neutron is $1.67493 \times 10^{-27}\, kg.$
Hence, the particle is neutron.