Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A particle is executing $S.H.M$. The time taken for $\left( \frac{3}{8}\right)^{th}$ of oscillation from extreme position is $X$ Then the time taken for the particle to complete $\left( \frac{5}{8}\right)^{th}$ of oscillation from mean position is

AP EAMCETAP EAMCET 2018

Solution:

We divide total distance $4\, A$ in $8$ equal parts.
image
So, for a displacement of $\frac{3}{8}$ th of an oscillation from an extreme,
image
Time $=\frac{T}{6}+\frac{T}{12}+\frac{T}{12}=\frac{2+1+1}{12}$
$T=\frac{4}{12} T=\frac{T}{3}$
Given, $\frac{T}{3}=x$ or $T=3 x$
Now, for $\frac{5}{8}$ th of oscillation from mean
image
Time $=\frac{T}{12}+\frac{T}{6}+\frac{T}{6}+\frac{T}{12}+\frac{T}{12}$
$\Rightarrow $ Time for $\frac{5}{8}$ th of oscillations
$=\frac{7}{12} T=\frac{7 \times 3 x}{12}=\frac{7}{4} x$