Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A particle executes SHM of type $x=A \sin \omega t$. It takes time $t_{1}$ from $x=0$ to $x=\frac{A}{2}$ and $t_{2}$ from $x=\frac{A}{2}$ to $x=A .$ The ratio $t_{1}: t_{2}$ will be

Oscillations

Solution:

image
$t_{1}+t_{2}=\frac{T}{4}$
or $ t_{2}=\frac{T}{4}-t_{1}$
At time, $t=t_{1}, x=\frac{A}{2}$
$\therefore \,\,\,\,\frac{A}{2}=A \sin \omega t_{1}$ or $\omega t_{1}=\frac{\pi}{6} \quad$ or $t_{1}=\frac{\pi}{6 \omega}$
$\therefore \,\,\,\,t_{2}=\frac{T}{4}-\frac{\pi}{6 \omega}=\frac{2 \pi}{4 \omega}-\frac{\pi}{6 \omega}=\frac{2 \pi}{6 \omega} \,\,\,\,\,\left(\because T=\frac{2 \pi}{\omega}\right)$
$\therefore t_{1}: t_{2}=1: 2$