Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A particle describes uniform circular motion in a circle of radius $2\, m$, with the angular speed of $2\, rad\, s^{-1}$ . The magnitude of the change in its velocity in $\frac{\pi}{2} s$ is

KEAMKEAM 2013Motion in a Plane

Solution:

Given, $r=2 \,m , \omega=2\, rad s ^{-1}, t=\frac{\pi}{2} \,S$
Now, $ \theta=\omega t=\pi\, rad$
$ V =r \omega=2 \times 2 $
$ V =4 \,ms ^{-1} $
Now, $ \Delta \,v=2 v \sin \frac{\theta}{2} $
$ \Delta \,v =2 \times 4 \times \sin \frac{\pi}{2} $
$ \Delta \,v =8 \,ms ^{-1} $