Thank you for reporting, we will resolve it shortly
Q.
A parabola $S=0$ has its vertex at $(-9,3)$ and it touches the $x$-axis at the origin then equation of axis of symmetry of the aforesaid parabola can be.
$V C=3$ units, $C O=9$ units
As per property: $A V=V N$ and $\frac{A N}{A V}=2=\frac{M N}{V C}$
$\Rightarrow O M=6 \tan \theta, A C=C M=3 \cot \theta \Rightarrow 9=3\left(2 \tan \theta+\frac{1}{\tan \theta}\right) $
$\Rightarrow m=1 \text { or } m=\frac{1}{2}$
$\Rightarrow Eq ^{ n }$ of Axis can be
$(y-3)=1(x+9)$
or$(y-3)=\frac{1}{2}(x+9)$