Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \frac{\left(a^{p+q}\right)^{15} \cdot\left(a^{q+r}\right)^{15} \cdot\left(a^{r+p}\right)^{15}}{\left(a^{p+q+r}\right)^{29}}= $___

Squares and Square Roots and Cubes and Cube Roots

Solution:

$ \frac{\left(a^{p+q}\right)^{15}\left(a^{q+r}\right)^{15}\left(a^{r+p}\right)^{15}}{\left(a^{p+q+r}\right)^{29}}$
$=\frac{\left(a^{p+q+q+r+r+p}\right)^{15}}{\left(a^{p+q+r}\right)^{29}}$
$= \frac{\left(a^{p+q+r}\right)^{30}}{\left(a^{p+q+r}\right)^{29}} $
$= a^{p+q+r}$