Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
A number of water droplets each of radius r coalesce to form a droplet of radius R . The rise in temperature is (Surface tension of water =S )
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. A number of water droplets each of radius $r$ coalesce to form a droplet of radius $R .$ The rise in temperature is (Surface tension of water =S )
Mechanical Properties of Fluids
A
$\frac{2 S}{r J}$
3%
B
$\frac{3 S}{J}\left(\frac{1}{r}-\frac{1}{R}\right)$
77%
C
$\frac{3 S}{r J}$
2%
D
$\frac{3 S}{J}\left(\frac{1}{r}+\frac{1}{R}\right)$
18%
Solution:
Let $n$ drops coalesce to form big drop. Then
$n \times \frac{4}{3} \pi r^{3}=\frac{4}{3} \pi R^{3} $
or $ n=\frac{R^{3}}{r^{3}}$
As heat produeed $=\frac{\text { work done }}{J}$
$\therefore m s \Delta T=\frac{\text { surface tension } \times \text { decrease in area }}{J}$
or $m s \Delta T=\frac{S}{J} \times\left[n \times 4 \pi r^{2}-4 \pi R^{2}\right]$
or $\frac{4}{3} \pi R^{3} \times 1 \times 1 \times \Delta T=\frac{S}{J} \times\left[n \times 4 \pi r^{2}-4 \pi R^{2}\right]$
or $ \Delta T=\frac{3 S \times 4 \pi}{J 4 \pi R^{3}}\left[n r^{2}-R^{2}\right]=\frac{3 S}{J R^{3}}\left[\frac{R^{3}}{r^{3}} r^{2}-R^{2}\right]$
$=\frac{3 S R^{3}}{J R^{3}}\left[\frac{1}{r}-\frac{1}{R}\right]=\frac{3 S}{J}\left[\frac{1}{r}-\frac{1}{R}\right]$