Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A nonconducting ring of mass $m$ and radius $R$ is charged as shown. The charged density i.e. charge per unit length is $\lambda $ . It is then placed on a rough nonconducting horizontal surface plane. At time $t \, = \, 0$ , a uniform electric field $\overset{ \rightarrow }{E} \, =E_{0}\hat{i}$ is switched on and the ring starts rolling without sliding. The friction force (magnitude and direction) acting on the ring, when it starts moving is

Question

NTA AbhyasNTA Abhyas 2020Electrostatic Potential and Capacitance

Solution:

Solution
$\mathrm{d} \tau=(\mathrm{dq}) \times\left(\mathrm{E}_0\right) 2 \mathrm{R} \sin \theta $
$\mathrm{d} \tau=(\lambda \mathrm{Rd} \theta) 2 \mathrm{RE}_0 \sin \theta $
$\tau=2 \mathrm{R}^2 \lambda \mathrm{E}_0 \int_0^{\pi / 2} \sin \theta \mathrm{d} \theta=2 \mathrm{R}^2 \lambda \mathrm{E}_0$
For translational motion,
$ f=m a \Rightarrow a=\frac{f}{m} $
For rotational motion, $\tau-f R=\left(m R^2\right)\left(\frac{a}{R}\right)$
From (2) and (3)
$ \tau=2 f_{\mathrm{r}} R $
From (1) and (4)
$ f_r=\frac{\tau}{2 R}=\frac{2 R^2 \lambda E_0}{2 R}=R \lambda E_0 \Rightarrow \vec{f} r=R \lambda E_0 \hat{i} $