Thank you for reporting, we will resolve it shortly
Q.
A mixture of ideal gases has $2$ moles of $He$, $4$ moles of oxygen and $1$ mole of ozone at absolute temperature $T$. The internal energy of mixture is
Kinetic Theory
Solution:
Degrees of freedom of $He \left(f_{ He }\right)=3$
Degrees of freedom of $O _{2}\left(f_{ O _{2}}\right)=5$
Degrees of freedom of $O _{3}\left(f_{ O _{3}}\right)=6$
$n_{ He }=2, \,\,\,n_{ O _{2}}=4 \,\,\,n_{ O _{3}}=1$
Energy of mixture = Sum of individual energies
$=\left(n_{ He } f_{ He }+n_{ O _{2}} f_{ O _{2}}+n_{ O _{3}} f_{ O _{3}}\right) \frac{R T}{2} $
$=(2 \times 3+4 \times 5+1 \times 6) \frac{R T}{2} $
$=(3+10+3) R T$
$=16\, RT$