Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A man swims to and fro along the bank of a river with a velocity $v$ relative to water. If the velocity of flow is $u$, the average speed of the man (for to and fro motion) is:

Motion in a Straight Line

Solution:

Velocity of man relative to ground in upstream
$ = v - u$
where $v =$ velocity of man relative to water
$u =$ velocity of water flow
velocity of man relative to ground in downstream Time taken to cover distance $d$ in to & from motion
$t = \frac{d}{v -u} + \frac{d}{v + u} =\frac{2dv}{v^2 - u^2}$
Average speed $= \frac{\text{total distance}}{\text{total time}}$
$= \frac{2d}{t} = \frac{v^2 -u^2}{v}$