Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A man alternately tosses a coin and throw a dice, beginning with the coin. The probability that he gets a head in coin before he gets a $5$ or $6$ in dice, is

NTA AbhyasNTA Abhyas 2020Probability

Solution:

$A=$ coin show head
$B=$ dice show $5$ or $6$
$P\left(A\right)=\frac{1}{2},P\left(B\right)=\frac{2}{6}=\frac{1}{3}$
Hence, the required Probability $=P\left(A\right)+P\left(A^{C}\right)P\left(B^{C}\right)P\left(A\right)+\left(P \left(A^{C}\right) P \left(B^{C}\right)\right)^{2}P\left(A\right)+\ldots $
$=\frac{1}{2}+\frac{1}{2}\times \frac{2}{3}\times \frac{1}{2}+\left(\frac{1}{2} \times \frac{2}{3}\right)^{2}\times \frac{1}{2}+\ldots $
$=\frac{\frac{1}{2}}{1 - \frac{1}{3}}=\frac{\frac{1}{2}}{\frac{2}{3}}=\frac{3}{4}$