Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A long horizontal wire AB, which is free to move in a vertical plane and carries a steady current of 20 A, is in equilibrium at a height of 0.01 m over another parallel long wire CD which is fixed in a horizontal plane and carries a steady current of 30 A, as shown in figure. Show that when AB is slightly depressed, it executes simple harmonic motion. Find the period of oscillations.Physics Question Image

IIT JEEIIT JEE 1994Moving Charges and Magnetism

Solution:

Let m be the mass per unit length of wire AB. At a height x above the wire CD, magnetic force per unit length on wire AB will be given by $\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, F_m=\frac{\mu_0}{2\pi}\frac{i_1 i_2}{x}$ (upwards) $\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, ...(i)$ Weight per unit length of wire AB is $\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, F_g=mg \, \, \, \, \, \, \, $ (downwards) Here, m = mass per unit length of wire AB At x = d, wire is in equilibrium i.e. $\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, F_m=F_g$ $or \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \frac{\mu_0}{2\pi}\frac{i_1 i_2}{d}=mg$ $or \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \frac{\mu_0}{2\pi}\frac{i_1 i_2}{d^2}=mg \, \, \, \, \, \, \, \, \, ...(ii)$ When AB is depressed, x decreases therefore,$F_m$ will increase, while $F_g$ remains the same. Let AB is displaced by dx downwards Differentiating Eq. (i) w.r.t. x, we get $\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, dF_m=-\frac{\mu_0}{2\pi}\frac{i_1}{x^2}dx \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, ...(iii)$ i.e. restoring force, $F = df_m \propto -dx$ Hence, the motion of wire is simple harmonic. From Eqs. (ii) and (iii), we can write $\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, dF_m=-\Bigg(\frac{mg}{d}\Bigg).dx \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, (x = d)$ $\therefore $ Acceleration of wire a $=-\Bigg(\frac{g}{d}\Bigg).dx$ Hence, period of oscillation $\, \, \, \, \, \, \, \, \, \, \, \, \, T=2\pi\sqrt{\Bigg|\frac{dx}{a}\Bigg|}=2\pi\sqrt{\frac{| displacement |}{| |acceleration |}}$ $or \, \, \, \, \, \, \, \, \, \, \, \, T=2\pi \sqrt{\frac{d}{g}}=2\pi \sqrt{\frac{0.01}{9.8}}$ $or \, \, \, \, \, \, \, \, \, \, \, \, T=0.2 s$

Solution Image