Q.
A line $l$ passing through the origin is perpendicular to the lines
$l_{1}:(3+t) \hat{ i }+(-1+2 t) \hat{ j }+(4+2 t) \hat{ k },-\infty < t < \infty$
$l_{2}:(3+2 s) \hat{ i }+(3+2 s) \hat{ j }+(2+s) \hat{ k },-\infty < s < \infty$
Then, the coordinate(s) of the point(s) on $l_{2}$ at a distance of $\sqrt{17}$ from the point of intersection of $l$ and $l_{1}$ is (are)
Solution: