Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
A hollow cylinder with inner radius R , outer radius 2R and mass M is rolling with speed of it's axis v . Its kinetic energy is <img class=img-fluid question-image alt=Question src=https://cdn.tardigrade.in/q/nta/p-bset3oayccamijjb.jpg />
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. A hollow cylinder with inner radius $R$ , outer radius $2R$ and mass $M$ is rolling with speed of it's axis $v$ . Its kinetic energy is
NTA Abhyas
NTA Abhyas 2022
A
$\frac{5}{6}\textit{Mv}^{2}$
B
$\frac{5}{2}\textit{Mv}^{2}$
C
$\frac{1}{2}\textit{Mv}^{2}$
D
$\frac{1 3}{1 6}\textit{Mv}^{2}$
Solution:
$\text{KE}=\frac{1}{2}\textit{Mv}^{2}+\frac{1}{2}\textit{I}\omega ^{2}$
$\text{KE}=\frac{1}{2}\left(\textit{Mv}\right)^{2}+\frac{1}{2}\textit{I \, }\left(\frac{\textit{v}}{2 \textit{R}}\right)^{2}$ ...(1)
Consider solid cylinder of radius $2R$ and mass $M'$ , from which a cylinder of radius $R$ of mass $\textit{M}\text{"}=\frac{\textit{M} \text{'}}{4}$ is taken out from a common axis.
Mass of hollow cylinder $M \, = \, M'-M''$
$\textit{M}=\textit{M}\text{'}-\frac{\textit{M} \text{'}}{4}=\frac{3 \textit{M} \text{'}}{4} \, \, \, ⇒ \, \, \, \textit{M}=\frac{3 \textit{M} \text{'}}{4} \, \, \, ⇒ \, \, \, \textit{M}\text{'}=\frac{4 \textit{M}}{3}\text{ & }\textit{M}\text{"}=\frac{\textit{M}}{3}$
$\left(\textit{I}\right)_{2 \text{R}}=\left(\textit{I}\right)_{\text{R}}+\textit{I} \, ⇒ \, \textit{I}=\left(\textit{I}\right)_{2 \text{R}}-\left(\textit{I}\right)_{\text{R}} \, ⇒ \, \textit{I}=\frac{1}{2}\textit{M}\text{'}\left(2 \textit{R}\right)^{2}-\frac{1}{2}\textit{M}\text{"}\left(\textit{R}\right)^{2}$
$\textit{I}=\left[\frac{1}{2} \times \frac{4 \textit{M}}{3} \times 4 \textit{R}^{2} - \frac{1}{2} \times \frac{\textit{M}}{3} \textit{R}^{2}\right] \, ⇒ \, \textit{I}=\frac{5}{2}\textit{MR}^{2}$ ... (2)
$\text{KE}=\frac{1 3}{1 6}\textit{Mv}^{2}$