Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A gas $(\gamma=1.5)$ undergoes a cycle of adiabatic, isobaric and isochoric processes in an order. If the volume of the gas is doubled in the adiabatic process then the efficiency of the cycle is approximately,

AP EAMCETAP EAMCET 2019

Solution:

According to the question, we drawn the following situation,
In isochoric process, $\frac{p_{A}}{T_{A}}=\frac{p_{B}}{T_{B}}$
image
$\left(\frac{p}{2 \sqrt{2}}, V, \frac{T}{2 \sqrt{2}}\right)$
As work done in adiabatic process,
$W =\frac{n R\left(T_{1}-T_{2}\right)}{\gamma-1}=\frac{R\left(T-\frac{T}{\sqrt{2}}\right)}{(1.5-1)} \,\,\,($ Taking, $ n=1)$
$V_{2} =2 V_{1} $
$\Rightarrow T_{2} =\frac{T_{1}}{\sqrt{2}} \text { or } T_{2}=\frac{T}{\sqrt{2}} $
$W_{1} =R T 2\left(1-\frac{1}{\sqrt{2}}\right)=0.58 \,\,\,(\because r=i $ Given $)$
Work done in isobaric process,
$W_{2}=p \Delta V=n R \Delta T$
$\Rightarrow W=n R\left(\frac{T}{2 \sqrt{2}}-\frac{T}{\sqrt{2}}\right)=-R T\left(\frac{1}{\sqrt{2}}-\frac{1}{2 \sqrt{2}}\right)=-0.35$
Now, heat given to system
$Q_{1}=n C_{p} \Delta T=\frac{7}{2} R\left(\frac{1}{\sqrt{2}}-\frac{1}{2 \sqrt{2}}\right)=-1.23\, J$
Negative, $Q_{1}$ shows that heat is given to the system.
Efficiency of the cycle,
$\eta =\frac{\text { net work done }}{\text { heat input }}=\frac{W_{1}+W_{2}}{Q_{1}}$
$=\frac{0.58-0.35}{1.23} $
$\Rightarrow \eta =\frac{0.23}{1.23} \times 100 \approx 18.6 \% \simeq 18 \%$
Hence, the efficiency of cycle is $18 \%$.