Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A function $f ( x )$ is given by $f ( x )=\frac{5^{ x }}{5^{ x }+5},$
then the sum of the series
$f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+f\left(\frac{3}{20}\right)+\ldots +f\left(\frac{39}{20}\right)$ is equal to:

JEE MainJEE Main 2021Relations and Functions

Solution:

$f(x)=\frac{5^{x}}{5^{x}+5} $
$ f(2-x)=\frac{5}{5^{x}+5}$
$f(x)+f(2-x)=1$
$\Rightarrow f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+\ldots+f\left(\frac{39}{20}\right)$
$=\left(f\left(\frac{1}{20}\right)+f\left(\frac{39}{20}\right)\right)+\ldots+\left(f\left(\frac{19}{20}\right)+f\left(\frac{21}{20}\right)+f\left(\frac{20}{20}\right)\right)$
$=19+\frac{1}{2}=\frac{39}{2}$