Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A function $f$ is defined on $[-3, 3]$ as
$f(x) = \begin{cases} \min \{|x|, 2 - x^2\}, & -2\le x \le 2 \\ [|x|], &2 < |x| \le 3 \end{cases}$
where $[x]$ denotes the greatest integer $\le x$. The number of points, where f is not differentiable in $(-3, 3)$ is ______.

JEE MainJEE Main 2021Continuity and Differentiability

Solution:

$f(x) = \begin{cases} min \{|x|, 2 - x^2\}, & -2\le x \le 2 \\ [|x|], &2 < |x| \le 3 \end{cases}$

$\Rightarrow x \in [-3, -2) \cup(2, 3]$
image
Number of points of non-differentiability in $(-3,3)=5$