Q.
A function $f$ is defined on $[-3, 3]$ as
$f(x) =
\begin{cases}
\min \{|x|, 2 - x^2\}, & -2\le x \le 2 \\
[|x|], &2 < |x| \le 3
\end{cases}$
where $[x]$ denotes the greatest integer $\le x$. The number of points, where f is not differentiable in $(-3, 3)$ is ______.
Solution: