Thank you for reporting, we will resolve it shortly
Q.
A flywheel starts from rest and rotates at a constant acceleration of $2\, rad \cdot s ^{-2}$. The number of revolutions that it makes in first ten seconds is
Initial angular velocity of flywheel, $\omega_{0}=0$
Angular acceleration, $\alpha=2 rad / s ^{2}$
Angular displacement in $t=10\, s$ is given as
$\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$
$=0 \times 10+\frac{1}{2} \times 2 \times 10^{2}$
$=100\, rad$
Number of revolution $=\frac{\theta}{2 \pi}=\frac{100}{2 \pi}$
$=\frac{100}{2 \times \frac{22}{7}}$
$=\frac{700}{44}=15.9 \sim e q 16$