Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A discrete random variable $X$ has the following probability distribution
$X$ 1 2 3 4 5 6 7
$P(X)$ $C$ $2C$ $2C$ $3C$ $C^2$ $2C^2$ $7C^2+C$

Consider the following statements
Statement I The value of $C$ is $-1$.
Statement II The mean of distribution is $3.66$.
Choose the correct option.

Probability - Part 2

Solution:

Since, $\Sigma p_i=1$, we have
$C+2 C+2 C+3 C+C^2+2 C^2+7 C^2+C=1$
$ \rightarrow 10 C^2+9 C-1=0$
$\rightarrow (10 C-1)(C+1)=0$
$\rightarrow C=\frac{1}{10}, C=-1 $
$\therefore$ Probability cannot be negative.
Therefore, the permissible value of $C=\frac{1}{10}$
Mean of $x=\displaystyle\sum_{i=1}^n x_i p_i=\displaystyle\sum_{i=1}^7 x_i p_i$
$=1 \times \frac{1}{10}+2 \times \frac{2}{10}+3 \times \frac{2}{10}+4 \times \frac{3}{10}+5\left(\frac{1}{10}\right)^2+6 \times 2\left(\frac{1}{10}\right)^2+7\left(7\left(\frac{1}{10}\right)^2+\frac{1}{10}\right)$
$=\frac{1}{10}+\frac{4}{10}+\frac{6}{10}+\frac{12}{10}+\frac{5}{100}+\frac{12}{100}+\frac{49}{100}+\frac{7}{10}$
$=3.66$