Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A disc of mass $ M $ and radius $ R $ is rolling with angular speed $ \omega $ on a horizontal surface as shown in figure. The magnitude of angular momentum of the disc about the origin $ O $ is (here $ v $ is the linear velocity of the disc)
image

AMUAMU 2016System of Particles and Rotational Motion

Solution:

The angular momentum about the origin
$= L_{\text{translational}} + L_{\text{Rotational}}$
where, $ v = $ linear velocity
$I = \frac{1}{2} mR^2$
$|L| = MvR + \frac{1}{2} MR^2\omega$
$ = M ( \omega R) \cdot R + \frac{1}{2} MR^2 \omega$
$ =MR^2 \omega + \frac{1}{2} MR^2 \omega$
$ = \frac{3}{2} MR^2 \omega $
$ = \frac{3}{2} MR^2 \frac{v}{R} $
$= \frac{3}{2} MRv$