Q.
A differentiable function $f(x)$ satisfying integral equation $f(x)=\left(\log _c x\right)^2-\int\limits_1^e \frac{f(t)}{t} d t$. Suppose $f(x)+\frac{1}{6}=g(x)$.
If $\frac{ dz }{ dx }-\frac{1}{ x \ln x } z = g ( x )$, then $z$ is given by
(where $c$ is constant of integration.)
Application of Integrals
Solution: