Q. A dietician wishes to mix together two kinds of food $X$ and $Y$ in such a way that the mixture contains atleast $10$ units of vitamin $A, 12$ units of vitamin $B$ and $8$ units of vitamin $C$. The vitamin content of $1\, kg$ food is given below
          J & K CETJ & K CET 2013Linear Programming
          
        
      Solution:
From the given data, we get the following LPP Min  $ Z=16x+20y $  S.t.  $ x+2y\ge 10, $   $ 2x+2y\ge 12 $   $ 3x+y\ge 8 $  and  $ x\ge 0,\,\,y\ge 0 $  First we assume all the inequalities as equations
Equations
Points
 $ x+2y=0 $ 
 $ (0,\,5) $  and  $ (10,\,0) $ 
s $ 2x+2y=12 $ 
 $ (0,6) $  and  $ (6,0) $ 
 $ 3x+y=8 $ 
 $ (0,8) $  and  $ \left( \frac{8}{3},0 \right) $ 
Now, we plot all these points on graph paper for getting a convex region.
For intersection point P,  $ \begin{align} & x+2y=10 \\ & 6x+12y=16 \\ & -\,\,\,\,\,\,\,\,\,\,-\,\,\,\,\,\,\,\,\,\,\,- \\ & \_\_\_\_\_\_\_\_\_\_\_ \\ & -5x=-6 \\ \end{align} $   $ \Rightarrow   $   $ x=\frac{6}{5} $  and they  $ y=\frac{22}{5} $   $ \therefore  $  Convex region is TSQD with extreme point  $ T(0,8),\,S(1,5),\,Q(2,\,4) $  and  $ D(10,0). $  Now, apply coner point method
Points
Objective function  $ \min \,\,z=16x+20y $ 
 $ T(0,\,8) $ 
 $ 16\times 0+20\times 8=160 $ 
 $ S(1,\,5) $ 
 $ 16\times 1+20\times 5=116 $ 
 $ Q(2,\,4) $ 
 $ 16\times 2+20\times 4=112 $ (min)
 $ D(10,\,0) $ 
 $ 16\times 10+20\times 0=160 $ 
So, the least cost of the mixture is Rs. 112.