Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A cylindrical pipe of $2800 \mathrm{~m}$ length is filled with water. If it contains $3.52 \mathrm{~m}^3$ water, then the inner radius of the pipe (in $\mathrm{cm}$ ) is___

Mensuration

Solution:

Let $r$ and $h$ be the radius and height of the cylinder, respectively.
$\pi r^2 h=3.52 \mathrm{~m}^3$
$ \frac{22}{7} \times r^2 \times 2800=3.52 $
$r^2 \times 400 \times 22=3.52$
$ r^2=\frac{0.04}{1000}=\frac{4}{10000}$
$ r^2=\left(\frac{2}{100}\right)^2 \Rightarrow r=\frac{1}{50} \mathrm{~m} \Rightarrow r=2 \mathrm{~cm}$