Q. A cubic equation $ x^3 + rx - p = 0 $ has roots $ a,b $ and $ c $ . A square matrix $ M = [m_{ij}], i, j = 0, 1 $ and $ 2 $ , of size $ 3 \times 3 $ is made such that $ m_{00}= a, m_{11} = b $ and $ m_{22} = c $ . All other elements of $ M $ are $ 1 $ . What should be the least value of $ p $ so that $ |M| $ is an odd prime?
J & K CETJ & K CET 2017Determinants
Solution: