$
-(n+1) f
$
As the image formed by convex lens is real and inverted, so
$
m=\frac{v}{u}=\frac{-1}{n} \Rightarrow v=\frac{-u}{n}
$
$
\begin{array}{l}
\therefore \frac{1}{v}-\frac{1}{u}=\frac{1}{f} \Rightarrow \frac{-n}{u}-\frac{1}{u}=\frac{1}{f} \\
\Rightarrow \frac{-1}{u}(n+1)=\frac{1}{f} \\
\Rightarrow u=-(n+1) f
\end{array}
$