Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A conducting metal circular -wire loop of radius $r$ is placed perpendicular to a magnetic field which varies with time as $B = B _{0} e ^{- t / \tau}$, where $B _{0}$ and $\tau$ are constants, at $t =0 .$ If the resistance of the loop is $R$ then the heat generated in the loop after a long time $( t \rightarrow \infty)$ is:

JEE MainJEE Main 2016Electromagnetic Induction

Solution:

heat equated $=\int\limits_{0}^{\infty} i ^{2}$ Rdt
$=\int\limits_{0}^{\infty} \frac{\varepsilon_{\text {ind }}{ }^{2}}{ Rt }$ Rdt
$=\frac{1}{ R } \int\limits_{0}^{\infty} \varepsilon_{\text {ind }}^{2} dt$
$=\frac{1}{ R } \frac{\pi^{2} r ^{4} B _{0}^{2}}{\tau^{2}} \int\limits_{0}^{\infty} e ^{-2 t / \tau} dt$
$=\left.\frac{\pi^{2} r ^{4} B _{0}^{2}}{ R \tau^{2}} \frac{ e ^{-2 t / \tau}}{-2 / \tau}\right|_{0} ^{\infty}$
$=+\frac{\pi^{2} r^{4} B_{0}^{2} \tau}{2 R \tau^{2}}\{0+1\}$
$\frac{\pi^{2} r^{4} B_{0}^{2}}{2 R \tau}$