Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A conducting circular loop of area $2.5\times 10^{- 3}m^{2}$ and resistance $10\Omega$ is placed perpendicular to a time varying magnetic field $B\left(\right.t\left.\right)=0.6Tsin\left(\right.50\pi t\left.\right).$ The field is uniform in space. The net charge flowing through the loop during $t=0s$ and $t=10ms$ is $\frac{k}{2}mC$ . Find the value of $k$ .

NTA AbhyasNTA Abhyas 2022

Solution:

Net charge $=\frac{\Delta \phi}{ R }=\frac{ A \left( B _{2}- B _{1}\right)}{ R }$
$=\left(2.5 \times 10^{-3}\right)(0.6)\left[\sin \frac{50 \pi(10)}{10^{3}}-\sin 0\right]$
$=1.5 \times 10^{-3}\left[\sin \frac{\pi}{2}-\sin 0\right]$
$=1.5 \times 10^{-3} C =\frac{3}{2} mC$