Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A complex number z is such that arg ((z-2/z+2))=(z/3). The points representing this complex number will lie on
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. A complex number $z$ is such that arg $\left(\frac{z-2}{z+2}\right)=\frac{z}{3}.$ The points representing this complex number will lie on
VITEEE
VITEEE 2013
A
an ellipse
B
a parabola
C
a circle
D
a straight line
Solution:
arg $\left(\frac{z-2}{z+2}\right)=\frac{\pi}{3}$
$\Rightarrow $ arg $\left(\frac{x-2+iy}{x+2+iy}\right)=\frac{\pi }{3}$
$\Rightarrow $ arg $\left(x-2+iy\right)-$ arg $\left(x+2+iy\right)= \frac{\pi }{3} $
$\Rightarrow tan^{-1}\left(\frac{y}{x-2}\right)-tan^{-1}\left(\frac{y}{x+2}\right)=\frac{\pi }{3}$
$\Rightarrow \frac{4y}{x^{2}+y^{2}-4}=\sqrt{3}$
$\Rightarrow \sqrt{3}\left(x^{2}+y^{2}\right)-4y-4\sqrt{3}=0$
which is an equation of a circle.