Q.
A charged particle (electron or proton) is introduced at the origin (𝑥 = 0, 𝑦 = 0, 𝑧 = 0) with a given initial velocity $\vec{v}$. A uniform electric field $\vec{E}$ and a uniform magnetic field $\vec{B}$ exist everywhere. The velocity $\vec{v}$, electric field $\vec{E}$ and magnetic field $\vec{B}$ are given in columns 1, 2 and 3, respectively. The quantities $𝐸_0 , 𝐵_0$ are positive in magnitude.
Column 1
Column 2
Column 3
(I) Electron with $\vec{v}=2 \frac{E_{0}}{B_{0}}\hat{x}$
(i) $\vec{E}=-E_{0}\hat{z}$
(P) $\vec{B}=-B_{0}\hat{x}$
(II)Electron with $\vec{v}= \frac{E_{0}}{B_{0}}\hat{y}$
(ii) $\vec{E}=-E_{0}\hat{y}$
(Q) $\vec{B}=-B_{0}\hat{x}$
(III) Proton with $\vec{v}=0$
(iii) $\vec{E}=-E_{0}\hat{x}$
(R) $\vec{B}=-B_{0}\hat{y}$
(IV)Proton with $\vec{v}=2 \frac{E_{0}}{B_{0}}\hat{x}$
(iv) $\vec{E}=-E_{0}\hat{x}$
(S) $\vec{B}=-B_{0}\hat{z}$
In which case will the particle describe a helical path with axis along the positive 𝑧 direction?
Column 1 | Column 2 | Column 3 |
---|---|---|
(I) Electron with $\vec{v}=2 \frac{E_{0}}{B_{0}}\hat{x}$ | (i) $\vec{E}=-E_{0}\hat{z}$ | (P) $\vec{B}=-B_{0}\hat{x}$ |
(II)Electron with $\vec{v}= \frac{E_{0}}{B_{0}}\hat{y}$ | (ii) $\vec{E}=-E_{0}\hat{y}$ | (Q) $\vec{B}=-B_{0}\hat{x}$ |
(III) Proton with $\vec{v}=0$ | (iii) $\vec{E}=-E_{0}\hat{x}$ | (R) $\vec{B}=-B_{0}\hat{y}$ |
(IV)Proton with $\vec{v}=2 \frac{E_{0}}{B_{0}}\hat{x}$ | (iv) $\vec{E}=-E_{0}\hat{x}$ | (S) $\vec{B}=-B_{0}\hat{z}$ |
JEE AdvancedJEE Advanced 2017
Solution: