Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A charge $q$ is spread uniformly over an isolated ring of radius $R$. The ring is rotated about its natural axis with an angular velocity $\omega$. Magnetic dipole moment of the ring is

AP EAMCETAP EAMCET 2016

Solution:

Given, charge $=q$
Radius of isolated ring $=R$
Angular velocity of ring $=\omega$
Magnetic dipole moment of the ring,
$M=n i A, n=1, M=i A$
The current in the ring, $i=q \times f$
where, $f=$ frequency of charge
$\omega=2 \pi f$
$f=\frac{\omega}{2 \pi}$
$ \Rightarrow i=q \cdot \frac{\omega}{2 \pi}$
Area, $A=\pi R^{2}$
$\Rightarrow M=q \cdot \frac{\omega}{2 \pi} \cdot \pi R^{2}=\frac{1}{2} q \omega R^{2}$