Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A charge $q$ is spread uniformly over an insulated loop of radius $r$. If it is rotated with an angular velocity $\omega$ with respect to normal axis then the magnetic moment of the loop is :

JEE MainJEE Main 2018Moving Charges and Magnetism

Solution:

Consider an element of the loop AB, subtending angle $d \theta$ at the centre of loop $O$,
image
So, charge present $d \theta$ is given by
$q'=\frac{q}{2 \pi} \cdot d \theta$
Then, current $i=\frac{d q^{\prime}}{d t}=\frac{d}{d t} \frac{q}{2 \pi} \cdot d \theta=\frac{q}{2 \pi} \cdot \frac{d \theta}{d t}$
$i=\frac{q}{2 \pi} \cdot \omega$
$\left[\right.$ Since, $\left.\omega=\frac{d \theta}{d t}\right]$
Therefore, magnetic moment of current loop
$M=i A=i \times \pi r^{2}=\frac{q}{2 \pi} \cdot \omega \pi r^{2}$
$\Rightarrow M=\frac{1}{2} q \omega r^{2}$