Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
A charge particle q1 is at position (2,-1,3) . The electrostatic force on another charged particle q 2 at (0,0,0) is:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. A charge particle $q_{1}$ is at position (2,-1,3) . The electrostatic force on another charged particle $q _{2}$ at (0,0,0) is:
Electric Charges and Fields
A
$\frac{ q _{1} q _{2}}{56 \pi \epsilon_{0}}(2 \hat{ i }-\hat{ j }+3 \hat{ k })$
29%
B
$\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{(\sqrt{14})^{3}}(-2 \hat{i}+\hat{j}-3 \hat{k})$
36%
C
$\frac{q_{1} q_{2}}{56 \pi \epsilon_{0}}(\hat{j}-2 \hat{i}-3 \hat{k})$
4%
D
$\frac{q_{1} q_{2}}{56 \sqrt{14} \pi \epsilon_{0}}(2 \hat{i}-\hat{j}+3 \hat{k})$
32%
Solution:
Position vector, $\overrightarrow{ d }$
$
\begin{array}{l}
\vec{d}=(2-0) \hat{i}-(1-0) \hat{j}+(3-0) \hat{k}=2 \hat{i}-\hat{j}+3 \hat{k} \\
d^{3}=[(2 \hat{1}-\hat{j}+3 \hat{k}) \cdot(2 \hat{\imath}-\hat{j}+3 \hat{k})]^{\frac{3}{2}} \\
d^{3}=14 \sqrt{14}
\end{array}
$
Electrostatic force F
$
\begin{array}{l}
F =\frac{1}{4 \pi \varepsilon_{0}} \frac{ q _{1} q _{2}}{ d ^{3}} \overrightarrow{ d }=\frac{ q _{1} q _{2}}{4 \pi \varepsilon_{0}} \frac{(2 \hat{ i }-\hat{ j }+3 \hat{ k })}{14 \sqrt{14}} \\
F =\frac{ q _{1} q _{2}}{56 \sqrt{14} \pi \varepsilon_{0}}(2 \hat{ i }-\hat{ j }+3 \hat{ k })
\end{array}
$