Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A carbon dioxide laser emits sinusoidal electro-magnetic wave that travels in vacuum in the negative $x$ -direction. The wavelength is $10.6\mu m$ and $\overset{ \rightarrow }{E}$ fields is parallel to z-axis, with $E_{max}=1.5\times 10^{6}Mvm^{- 1}$ Then vector equations for $\overset{ \rightarrow }{E}$ and $\overset{ \rightarrow }{B}$ as a function of time and position are:-

NTA AbhyasNTA Abhyas 2022

Solution:

Let $I=\lim _{n \rightarrow \infty} \sum_{r=1}^{4 n} \frac{\sqrt{n}}{\sqrt{r}(3 \sqrt{r}+4 \sqrt{n}}$
$=\lim _{x \rightarrow \infty} \sum_{r=1}^{4 m} \frac{1}{n} \cdot \frac{1}{\sqrt{\frac{\Gamma}{n}}} \cdot \frac{1}{\frac{(3 \sqrt{r}+4 \sqrt{n}}{n}}$
$=\lim _{n \rightarrow \infty} \sum_{r=1}^{4 n} \frac{1}{\sqrt{\frac{\Gamma}{n}}} \cdot \frac{1}{\left(3 \sqrt{\frac{\Gamma}{n}}+4\right.} \cdot \frac{1}{n}$
$=\int_{0}^{4} \frac{1}{\sqrt{x}(3 \sqrt{x}+4} d x$
Put $3 \sqrt{x}+4=t$
$\Rightarrow 3 \cdot \frac{1}{2 \sqrt{x}} d x=d t$
$\Rightarrow \frac{1}{\sqrt{x}} d x=\frac{2}{3} d t$
$\Rightarrow I=\int_{4}^{10} \frac{1}{t^{2}} \cdot \frac{2}{3} d t=-\frac{2}{3}\left[\frac{1}{t}\right]_{t}^{10}$
$\Rightarrow a=\frac{2}{3}\left(\frac{1}{10}-\frac{1}{4}\right)=\frac{1}{10}$
$\Rightarrow a=10$