Q.
A capacitor is made of two square plates each of side $'a'$ making a very small angle a between them, as shown in figure. The capacitance will be close to :
Solution:
Assume small element $dx$ at a distance $x$ from left end
Capacitance for small element $dx$ is
$dC=\frac{\varepsilon_{0}a\,dx}{d+x\,\alpha}$
$C=\int\limits^{a}_{{0}}\frac{\varepsilon_{0}a\,dx}{d+x\,\alpha}$
$=\frac{\varepsilon_{0}\,a}{\alpha}In\left(\frac{1+\alpha a}{d}\right)|^a_0$$\,\left(In\left(1+x\right)\approx x-\frac{x^{2}}{2}\right)$
$=\frac{\varepsilon_{0}a^{2}}{d}\left(1-\frac{\alpha a}{2d}\right)$
