Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A capacitor $C_{1}$ of capacitance $C$ is charged to a potential difference $V_{0}$. The terminals of the charged capacitor are then connected to an uncharged capacitor $C_{2}$ of capacitance $C / 2$.
Column I Column II
A Final energy of capacitor $C_{1}$ 1 $-(1 / 6) C V_{0}^{2}$
B Final energy of capacitor $C_{2}$ 2 $(1 / 6) C V_{0}^{2}$
C Final energy of the system 3 $(1/3) C V_{0}^{2}$
D Change in energy on joining the capacitors 4 $(2/9) C V_{0}^{2}$
5 $(1 / 9) C V_{0}^{2}$

Electrostatic Potential and Capacitance

Solution:

$A \rightarrow 4 ; B \rightarrow 5 ; C \rightarrow 3 ; D \rightarrow 1$
As, $\frac{Q_{1}}{C_{1}}=\frac{Q_{2}}{C_{2}}, Q_{2}=\left(\frac{C_{2}}{C_{1}}\right) Q_{1}=\frac{(C / 2)}{C} Q_{1}=\frac{Q_{1}}{2}$
Further, as
$Q=Q_{1}+Q_{2}=Q_{1}+\frac{Q_{1}}{2}$
$Q_{1}=\frac{2}{3} Q \text { and } Q_{2}=\frac{1}{3} Q$
$U_{1} =\frac{Q_{1}^{2}}{2 C_{1}}=\frac{\left(\frac{2}{3} Q\right)^{2}}{2 C}=\frac{2}{9}\left(\frac{Q^{2}}{C}\right)$
$=\frac{2}{9}\left(\frac{C^{2} V_{0}^{2}}{C}\right)=\frac{2}{9} C V_{0}^{2}$ $\left(\text { as } Q=C V_{0}\right)( A \rightarrow 4)$
$( B \rightarrow 5) U_{2}=\frac{Q_{2}^{2}}{2 C_{2}}=\frac{\left(\frac{1}{3} Q\right)^{2}}{2(C / 2)}$
$=\frac{1}{9}\left(\frac{Q^{2}}{C}\right)=\frac{1}{9} C V_{0}^{2}$
$( C \rightarrow 3) U_{\text {final }}=U_{1}+U_{2}=\frac{1}{3} C V_{0}^{2}$
$( D \rightarrow 1) U_{\text {initial }}=\frac{Q^{2}}{2 C}=\frac{\left(C V_{0}\right)^{2}}{2 C}=\frac{1}{2} C V_{0}^{2}$
Change in energy, $\Delta U=-\frac{1}{6} C V_{0}^{2}$